
CS 287
Assignment 2: Tagging from Scratch

Due: Monday, Feb 22nd, 11:59 pm

In class we have been discussing an influential neural network model for part-of-speech tag-
ging, based on the paper NLP (Almost) from Scratch (Collobert et al., 2011). The goal of this home-
work assignment is to replicate the central model from this work. At the end of this assignment,
you will have created your own state-of-the-art part-of-speech tagger, and built a framework that
can be used easily for many other NLP tasks.

Warning: this assignment will be a bit challenging in a way that is different from a standard CS
assignment. There is not much code to write here, our implementation of this assignment contains
< 150 lines of Lua code; however you will have to run experiments that require several hours of
training time . Therefore it is crucially important that all the details (network sizes, preprocessing,
features, training) are correct. We will point you to the sections of the paper that contain important
information, but it is up to you to test and implement each aspect. Before you start we advise that
you get very comfortable with the notes from class, the paper itself, and especially Torch and the
nn library.

As you complete this assignment, we ask that you submit your results on the test data to
the Kaggle competition website at https://inclass.kaggle.com/c/cs287-hw2 and that
you compile your experiences in a write-up based on the template at https://github.com/
cs287/hw_template.

1 Data and Preprocessing

1.1 Data

The main data for this task is in the data/ directory. Here is the first training sentence with part-
of-speech tags. (This is a classic sentence that any NLP researcher knows by heart. See this obitu-
ary on the amazing Language Log, http://languagelog.ldc.upenn.edu/nll/?p=3594.).

> head -n 20 data/train.tags.text
1 1 Pierre NNP
2 2 Vinken NNP
3 3 ,,
4 4 61 CD
5 5 years NNS
6 6 old JJ

1

7 7 ,,
8 8 will MD
9 9 join VB
10 10 the DT
11 11 board NN
12 12 as IN
13 13 a DT
14 14 nonexecutive JJ
15 15 director NN
16 16 Nov. NNP
17 17 29 CD
18 18 . .

19 1 Mr. NNP

Each line of the file contains one tokenized word. The columns represent:

1. the global id of the word

2. the sentence id of the word

3. the tokenized word form

4. the part-of-speech tag

Sentences are separated by blank rows. Sentence boundaries are a classic source of errors, so you
will have to handle these carefully. In addition we also include a tag dictionary file.

> head data/tags.dict
NNP 1
, 2
CD 3
NNS 4
JJ 5
MD 6
VB 7
DT 8
NN 9
IN 10

This is a mapping from each part-of-speech tag in the Penn Treebank to a unique ID. It is
important that you use this mapping since it is used for the Kaggle competition data. For those
interested, the specification of the mapping from names to descriptions is given at https://
www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html.

1.2 Preprocessing

For this assignment you will write your own preprocessing code in preprocessing.py. This
code should transform the data representations given above into a format for multi-class classifi-
cation. In particular you will,

• Clean the input data following Section 3.4

• Pre-construct the features that are fed into the network

• Pre-construct the windows around each word (as described in class)

• Write out a vector of the pretrained embeddings for each word (see below)

The important paragraph from Section 3.4 describes the necessary preprocessing,

All our networks were fed with two raw text features: lower case words, and a capital
letter feature. We chose to consider lower case words to limit the number of words in
the dictionary. However, to keep some upper case information lost by this transforma-
tion, we added a caps feature which tells if each word was in low caps, was all caps,
had first letter capital, or had one capital. Additionally, all occurrences of sequences of
numbers within a word are replaced with the string NUMBER, so for example both the
words PS1 and PS2 would map to the single word psNUMBER. We used a dictionary
containing the 100,000 most common words in WSJ (case insensitive). Words outside
this dictionary were replaced by a single special RARE word.

Also note the remark on border words,

Remark 1 (Border Effects) The feature window (3) is not well defined for words near
the beginning or the end of a sentence. To circumvent this problem, we augment the
sentence with a special PADDING word replicated dwin/2 times at the beginning and
the end. This is akin to the use of start and stop symbols in sequence models.

Since there are only two types of features (word and capitalization), it is likely easiest to simply
output two tensors. When done you should output something like the following matrices in an
HDF5 group. We ended with something like this, although yours may vary.

train input word windows, train input cap windows, train output valid input word windows,
valid input cap windows, valid output, test input word windows, test input words,
nclasses, nwords, word embeddings

2 Code Setup

Write your main code in HW2.lua. For this assignment part, you can (and should) use the nn
library in addition to the standard Torch library. You should not need to use any extra libraries.

2.1 Prediction and Evaluation

Be sure you are able to read and output the text data and that you understand the format. Also be
sure you are able output your classification results on the test data as a text file. Check that you
can upload these to the Kaggle. The Kaggle submission takes in the global id of the word (first
column) and the class (1-based). For example

ID,Class
1,20
2,24
3,12

2.2 Hyperparameters

Several of the models described have explicit hyperparameters that you will need to tune. It
is your responsibility to cleanly separate these out from the models themselves and expose as
command-line options. This makes it much easier to run experiments and to utilize experimental
scripts.

2.3 Logging and Reporting

As part of the write-up, you will need to report on the training and predictive accuracy of your
models. To make this possible, your code should report on various metrics of the model both at
training and test time. We will leave it up to you on which metrics to log, but we recommend
reporting training speed, training set NLL, training set predictive accuracy, and validation predic-
tive accuracy. It is your responsibility to convince us that the model is correctly training.

3 Models

For this assignment you will implement the three models. We will warm up with naive Bayes
and multiclass logistic regression, then we will move on to the full neural network model from
Collobert et al. (2011), both with and without pre-trained embeddings.

3.1 Naive Bayes

To start, modify your code from HW1 to implement a windowed version of naive Bayes first. This
will give you an efficient method that is easy to debug.

Note since the windowed setup has a fixed length, we can use a more appropriate factorization
than the last problem. Informally,

p(x, y = δ(c)) ≈ p(y = δ(c))
bdwin/2c

∏
i=−bdwin/2c

p(word at i in x|y = δ(c))p(capitalization at i in x|y = δ(c))

That is we can treat each relative window position as a separate multinomial distribution (as-
suming the word and its capitalization are independent), instead of having a single multinomial
over all features.

3.2 Multiclass Logistic Regression

As a second baseline, you will reimplement multiclass logistic regression for this problem. How-
ever, for this assignment instead of using your previous code, you will implement it using the nn
library with mini-batch SGD.

Note the following correspondences,

Math Torch

sparse xW nn.LookupTable
log softmax nn.LogSoftMax
Lcross−entropy() nn.ClassNLL
dense xW + b nn.Linear

The documentation (https://github.com/torch/nn) is quite good for all of these models
(although it is possible the notation may be slightly different than class).

The training and evaluation code for the model will take a different (but similar) form from
HW1. Here are a couple tips for implementing this code.

• Train using minibatches (we used size 32). This will significantly speed up training.

• Keep track of the average loss as you train.

• Run on the development set each iteration to see the progress of the model.

• You should not have to run for more than 20 epochs on this data. If you are seeing large
changes beyond that, you may have an issue.

• We recommend that you first test this code on multiclass logistic regression before moving
on to the neural network model.

3.3 Neural Network Model

Finally implement the word-level neural network described in Section 3 of the paper (Figure 1),
and discussed in class. The model should not require many more units than for multiclass logistic
regression. Basically you should be able to reuse all training and test code, and only change the
model itself.

We refer you to the paper itself for the details about the model architecture and layer sizes.
The authors are very detailed about these sizes and the experiments that they ran. You should not
have to worry about aspects like model initialization since Torch sets reasonable defaults.

One tricky aspect is handling separately-sized embeddings for words and capitalization fea-
tures. Start with just word-embeddings. To include capitalization we used nn.ParallelTable,
nn.JoinTable, and nn.View (although there are other ways to do this.)

3.4 Neural Network Model with Pretrained Vectors

Perhaps the most influential aspect is Section 4 which discusses semi-supervised training of the
model. This section incorporates a large corpus of unlabeled data to “pretrain” the word embed-
dings that are used in the model. This pretraining gives good starting representations, which are
particularly useful for rare words in the training vocabulary.

Unfortunately we do not have the computational power or the time to replicate these experi-
ments. The authors note, ”Since training times for such large scale systems are counted in weeks,
it is not feasible to try many combinations of hyperparameters” (Although as we will see in the
next assignment, that this training time has been brought down significantly.)

Luckily, pre-trained word embeddings are now conveniently available. We will use the vec-
tors learned in the work of Pennington et al. (2014). These are given in the data directory as
data/glove.6B.50d.txt.gz. The format is one word per line with din columns,

zcat data/glove.6B.50d.txt.gz | head -n 1
the 0.418 0.24968 -0.41242 0.1217 0.34527 ...

First, you should align the word features with the vectors in this file in your preprocessing. As
part of preprocessing you should output a matrix of embeddings, where each row i contains the
embedding for word index i.

Then before running training you should replace the parameters in your lookup table with the
word embeddings before training your model. Read the code in nn.LookupTable to get a sense
of how these parameters are stored and what you should replace.

3.5 Additional Experiments

Once these models are constructed, you should also report on additional experiments on these
data sets. We will leave this aspect open-ended, but suggestion include:

• Including additional features (for instance see Section 6 (Collobert et al., 2011))

• Experiment with different optimization techniques. For instance see the optim package.

• Experimenting with different architectures. Do more layers help?

• Sometimes it is more convenient to have fixed embeddings (as opposed to changing them
during training). Experiment with ”fixing” the embedding layer. (Hint: make sure the em-
bedding layer does not receive gradients.)

4 Report and Submission

For your write-up, follow the report template at https://github.com/cs287/hw_template.
Be sure to include a link to your code, Kaggle ID, and reports on your results.

In addition to submitting your Kaggle results, we also expect you to report on your experi-
mental process. This should include data tables, graphs and discussion of any issues that you
may run into.

References

Collobert, R., Weston, J., Bottou, L., aKrlen, M., Kavukcuoglu, K., and Kuksa, P. (2011). Natural
language processing (almost) from scratch. The Journal of Machine Learning Research, 12:2493–
2537.

Pennington, J., Socher, R., and Manning, C. D. (2014). Glove: Global vectors for word represen-
tation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest Group of the
ACL, pages 1532–1543.

