
CS 287
Assignment 4: Word Segmentation

Due: Friday, April 1st, 11:59 pm

Over the last couple years there has been tremendous interest in recurrent neural networks for
natural language tasks, and in particular the long short-term memory (LSTM) network. The last
several classes have focused on the theory and structure of recurrent networks. For this assign-
ment you will actually construct utilize an LSTM for a real-world problem.

The problem we will focus on is word segmentation, that is identifying the spaces in sentence-
based on the previous characters only. This is a simplified version of word segmentation processes
necessary for processing languages written without spaces, such as Korean or Chinese.

Given an input sequence of characters such as

t h e d o g w a l k s t o t h e p a r k

You will attempt to give back the original sequence of words:

the dog walks to the park.

Unlike past assignments, this assignment is not a research-level task. However this will give
you a chance to experiment with LSTM in a clear domain. If you are interested in further experi-
mentation, you can tweak your code to produce a working LSTM language model and babbler.

Before you start we advise that you get very comfortable with the notes from class, the papers
on LSTMs, and especially the torch rnn library.

As you complete this assignment, we ask that you submit your results on the test data to
the Kaggle competition website at https://inclass.kaggle.com/c/cs287-hw4 and that
you compile your experiences in a write-up based on the template at https://github.com/
cs287/hw_template.

1 Data and Preprocessing

1.1 Data

The data for this task is under the data/ directory. Our data is the same of the previous as-
signment, except that now we have given you only the characters of the data set separated with
explicit space tokens.
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> head data/valid_chars.txt
c o n s u m e r s <space> m a y <space> w a n t <space> t o <space> m o

v e <space> t h e i r
<space> t e l e p h o n e s <space> a <space> l i t t l e <space> c l o

s e r <space> t o <space>
t h e <space> t v <space> s e t </s> < u n k > <space> < u n k > <space

> w a t c h i n g <space>
a b c <space> ’ s <space> m o n d a y <space> n i g h t <space> f o o t

b a l l <space> c a n
<space> n o w <space> v o t e <space> d u r i n g <space> < u n k > <

space> f o r <space> t h e
<space> g r e a t e s t <space> p l a y <space> i n <space> N <space> y

e a r s <space> f r o m
<space> a m o n g <space> f o u r <space> o r <space> f i v e <space> <

u n k > <sp

Note that for this problem set we no longer print the data file in lines, we simply concatenate
together each one of the sentence separated with a < /s > symbol.

The test data is in file test chars.txt. This file consists of one sentence per line and includes
no explicit spaces. The aim of the project is to re-insert spaces back into the sentences. We have
also provided this file for the validation data.

> head data/valid_chars_kaggle.txt
c o n s u m e r s m a y w a n t t o m o v e t h e i r t e l e p h

o n e s a l i t t l
e c l o s e r t o t h e t v s e t </s>
< u n k > < u n k > w a t c h i n g a b c ’ s m o n d a y n i g h

t f o o t b a l l c
a n n o w v o t e d u r i n g < u n k > f o r t h e g r e a t e

s t p l a y i n N y
e a r s f r o m a m o n g f o u r o r f i v e < u n k > < u n k

> </s>
t w o w e e k s a g o v i e w e r s o f s e v e r a l n b c < u

n k > c o n s u m e r
s e g m e n t s s t a r t e d c a l l i n g a N n u m b e r f o

r a d v i c e o n v
a r i o u s < u n k > i s s u e s </s>
a n d t h e n e w s y n d i c a t e d r e a l i t y s h o w h a r

d c o p y r e c o r
d s v i e w e r s ’ o p i n i o n s f o r p o s s i b l e a i r i

n g o n t h e n e x
t d a y ’ s s h o w </s>

i n t e r a c t i v e t e l e p h o n e t e c h n o l o g y h a s t
a k e n a n e w l e

The Kaggle answer file should simply provide the number of spaces for each sentence. We
have provided you with a sample answer file for reference.



> head data/valid_chars_kaggle_answer.txt
ID,Count
1,13
2,26
3,20
4,20
5,18
6,11
7,26

1.2 Preprocessing

For this assignment you will write your own preprocessing code in preprocessing.py. Prepro-
cessing for this assignment means transforming the training corpus into a representation usable
for RNN training. As in previous assignments you will need to create a map from characters to
indices. However, since there is no longer a fixed window size the layout is a bit different. The
following is a description of how to structure the input data for a transducer RNN.

Say our training corpus consists of characters w1, . . . , wn In a perfect world, we could have the
RNN consume as one long matrix. [

w1 w2 . . . wn
]

However, this would mean we would need to wait n steps to backprop. Instead it is more
common to select a fixed sequence length l for doing backpropagation. We remember the hidden
state between sequences (sl combines with wl+1), but only backprop within a sequence length
window. [

w1 w2 . . . wl
] [

wl+1 wl+2 . . . w2l
]

. . .
[
wn−l+1 wn−l+2 . . . wn

]
When you use this strategy, you much call the following rnn function to save states between

matrices (this only needs to be done once at initialization of the model).

model:remember(’both’)

While this method has a fixed backprop length of l, with a reasonable size l it works well in
practice. Unfortunately it is quite slow since we cannot use a batch (sequential processing). To get
around this issue we split the sequence into b parts and fold them over each other.


w1 w2 . . . wl

wn/b+1 wn/b+2 . . . wn/b+l
...

w(b−1)n/b+1 w(b−1)n/b+2 . . . w(b−1)n/b+l




wl+1 . . . w2l
wn/b+l+1 . . . wn/b+2l

...
. . .

 . . .


wn/b−l+1 wn/b−l+2 . . . wn/b

. . .
...

. . .


This allows both batching and backprop with a fixed length. Note though that the hidden

states at first timestep (wn/b+1) will be incorrect since they get computed before their correct pre-
vious hidden (wn/b). However this is tolerable since it only leads to b incorrect hidden states
during training.



Since we will be building a transducer, we also need the training data to be in the same format.
Say we are predicting ŷ at each step. Then our target output will be of the form,


y1 y2 . . . yl

yn/b+1 yn/b+2 . . . yn/b+l
...

y(b−1)n/b+1 y(b−1)n/b+2 . . . y(b−1)n/b+l




yl+1 . . . y2l
yn/b+l+1 . . . yn/b+2l

...
. . .

 . . .


yn/b−l+1 yn/b−l+2 . . . yn/b

. . .
...

. . .


For language modeling the target output yi would be the next word wi+1. For this assignment,

our goal is simply space prediction. Therefore the target output yi will be 2 if the next word wi+1
is a space and 1 otherwise.

2 Code Setup

Write your main code in HW4.lua. For this assignment part, you can (and should) use the nn
and rnn library in addition to the standard Torch library. You should not need to use any extra
libraries.

2.1 Hyperparameters

Several of the models described have explicit hyperparameters that you will need to tune. It
is your responsibility to cleanly separate these out from the models themselves and expose as
command-line options. This makes it much easier to run experiments and to utilize experimental
scripts.

2.2 Logging and Reporting

As part of the write-up, you will need to report on the training and predictive accuracy of your
models. To make this possible, your code should report on various metrics of the model both at
training and test time. We will leave it up to you on which metrics to log, but we recommend
reporting training speed, training set NLL, training set predictive accuracy, and validation predic-
tive accuracy. It is your responsibility to convince us that the model is correctly training.

3 Models

For this assignment you will implement the three models. We will warm up with a count-based
model. Then we will try our Bengio NNLM and an LSTM model.

3.1 Count-Based Model

To start, modify your code from HW3 to implement a count-based character n-gram model. The
model should only give the probability of the next word being a space

P(wi =< space > |wi−n+1, . . . wi−1)



Test the model out by determining its perplexity on the validation set and by running on the
segmentation task.

For segmentation you should run two inference algorithms.

1. Greedily predict whether the next word is a space, and feedback into the model. (i.e. if it is
a space, add the <space> to the context. Otherwise continue normally).

2. Dynamic programming over n-grams as described in class.

3.2 Neural Language Model

As a second baseline, you will modify your neural language model from the HW3 to predict
whether the next character is a space or not. This should be relatively similar to your previous
code, except that you will be prediction 1 or 2 instead of a softmax over words. For this problem
you can have a much smaller embedding size of around ≈ 15

As above you should test your model by running greedy search and dynamic programming
(for a small size).

3.3 RNN Model

The main portion of the assignment will be implementing the RNN model using the Elements rnn
library. Much of the main portion of the work is done for you by the library. However getting the
details right is crucially important.

For this model you should implement a generic RNN transducer. Given the current state of
the RNN you are simply trying to predict whether this is a space in the next word.

Necessary Hacks: In any torch model you can call the following function one time to get a vector
of all the params and gradients of the params.

local params, grad_params = model:getParameters()

Once you have these vectors you should do the following:

• To begin you should initialize all the params to be uniform between −0.05 and 0.05.

• Before updating your parameters, you should perform gradient normalization with max
norm 5.

• (Optional) Use the perplexity of the validation set as a guide for the learning rate. If the
validation perplexity does not decrease, then half the current value of the learning rate. This
can be useful for dynamically finding a good rate.

Once you have the model, use it in the greedy fashion described above. At each time step
predict whether the next word is a space. If it is, feed in a <space> to the model before continuing,
otherwise continue onward. Keep track of how many spaces you have seen so far.



3.4 Additional Experiments

Once these models are constructed, you should also report on additional experiments on these
data sets. We will leave this aspect open-ended, but suggestion include:

• Compare performance between the LSTM, RNN and GRU on this task

• Experiment with the stack LSTM and dropout. The rnn library provides details for how to
implement this.

• Try implementing a bidirectional LSTM for prediction. This model is provided by the rnn
library. In this model you do not need to do greedy search, however you will have to change
your training such that you do not see the spaces in the data.

• Try using your LSTM for language modeling on the previous homework (HW3). You should
be able to use basically the same setup for this problem but with words instead of characters.
Likely you will want to run this on the GPU.

4 Report and Submission

For your write-up, follow the report template at https://github.com/cs287/hw_template.
Be sure to include a link to your code, Kaggle ID, and reports on your results.

In addition to submitting your Kaggle results, we also expect you to report on your experi-
mental process. This should include data tables, graphs and discussion of any issues that you
may run into.


