CS 287
Assignment 5: Sequences and Entities

Due: Friday, April 15th, 11:59 pm

Finding and labeling named-entities in text is often the first step for full-scale information
extraction tasks. Furthermore many interesting and practical NLP tasks can often be framed in
this paradigm of identifying and labeling contiguous segments of text.

While there are many ways to frame this entity recognition problem, in this problem set we
will focus on using sequence (Markov) models for this task. These models differ from the previous
models that we have seen in the homework because instead of just making single predictions they
require a search step to find the best sequence, i.e. maximizing the sequential scoring function
f(x,c1:0). In order to solve this exactly, you will have to run dynamic programming over the
sequence.

As you complete this assignment, we ask that you submit your results on the test data to
the Kaggle competition website at https://inclass.kaggle.com/c/cs287-hw5 and that
you compile your experiences in a write-up based on the template at https://github.com/
cs287/hw_template.

1 Data and Preprocessing

1.1 Data

The data for this problem set is in the data/ directory. It consists of a subset of the CoNLL
2003 shared task for named-entity recognition. (The full specification is available here http:
//www.cnts.ua.ac.be/conll2003/ner/).

> head data/train.num.txt

1 1 EU I-ORG
2 2 rejects O

3 3 German I-MISC
4 4 call O

5 5 to 0

6 6 boycott O

7 7 British I-MISC
8 8 lamb 0

9 9 O

10 1 Peter I-PER

11 2 Blackburn I-PER
12 1 BRUSSELS I-1L.0OC
13 2 1996-08-22 @)

14 1 The 0

15 2 European I-0ORG
16 3 Commission I-ORG
17 4 said 0

For continuity, the data is in the same format as in HW 2. Each line of the file contains one
tokenized word. The columns represent:

1. the global id of the word
2. the sentence id of the word
3. the tokenized word form

4. the BIO tag of the word

Sentences are separated by blank rows. Sentence boundaries are a classic source of errors, so you
will have to handle these carefully. In addition we also include a tag dictionary file.

> cat data/tags.dict
01

I-PER 2

I-LOC 3

I-ORG 4

I-MISC 5

B-MISC 6

B-LOC 7

This is a mapping from each BIO tag in the CoNLL data set to a unique ID. It is important
that you use this mapping since it is used for the Kaggle competition data. Note that B-ORG and
B-PER are not seen in training. You might actually find that you code is faster if you ignore the B-
tags altogether, as they are quite rare in NER.

1.2 Preprocessing

For this assignment you will write your own preprocessing code in preprocessing.py. This
code should transform the data representations given above into a format for multi-class classifi-
cation. In particular you will,

e Clean the input data

e Pre-construct the features that are fed into the network

e Write out a vector of the pretrained embeddings for each word (for neural MEMM model)

For the sake of fairness, we recommend looking at the CONLL2003 shared task report to see
which features might be useful Tjong Kim Sang and De Meulder (2003). We have included the key
tigure describing the features used by the teams.

73
i
»
=
=]
=
=+

gaz | chu | pat | cas | tri | bag | quo | doc

Florian
Chieu

Klein
Zhang
Carreras (a)
Curran
Mayfield
Carreras (b)
MecCallum
Bender
Munro

Wu
Whitelaw
Hendrickx
De Meulder
Hammerton

++++++++
+++ 0 ++
4 4+ 4

+++++++ 0 ++

++++++++++++
+ 4+ ++
Coodt b+ 4 H[E
+4+ 0+

+ 0+ 4+

I

++4+ 0 +++ 0+ +H++++ +HD

+ 4+
+ 4+
+ 4+ 4

Table 3: Main features used by the the sixteen systems that participated in the CoNLL-2003 shared task
sorted by performance on the English test data. Aff: affix information (n-grams); bag: bag of words; cas:
global case information; chu: chunk tags; doc: global document information; gaz: gazetteers; lex: lexical
features; ort: orthographic information; pat: orthographic patterns (like Aal); pos: part-of-speech tags; pre:
previously predicted NE tags; quo: flag signing that the word is between quotes; tri: trigger words.

We would recommend starting with the most-common features and then possibly adding
more if you have time. Some of them are more difficult to implement and/or less interesting.
For instance “gaz” means a white-list of entities of that type (for instance countries of the world).

2 Code Setup

Write your main code in HW5. lua. For this assignment part, you can (and should) use the nn
library in addition to the standard Torch library. You should not need to use any extra libraries.

2.1 Prediction and Evaluation

Despite the similarity of the input, the Kaggle competition setup is actually different than HW2.
Instead of simply computing the accuracy of each of the predictions, we will instead follow the
common definition of the task and use F-score as the metric. Formally define the Fg as

(B> +1) x prec x recall
B? x prec + recall

Where precision and recall are defined in the standard way with precision being the number
of entities produced by the system being correct and recall is the number of true entities that are
found by the system. A prediction is only considered correct if it gets the type and the span exactly
right.! Here is an example of the correct sample dev output:

ID, Labels

ID, Labels

1,0RG-3

2,L0C-1

3,MISC-1-2 PER-4-5 ORG-13 ORG-15

4,0RG-14 ORG-16 ORG-18 ORG-25 ORG-36
5,0RG-3 LOC-12-13 ORG-15 LOC-30 PER-32-33
6,0RG-5 PER-15

7,0RG-1 PER-13-14 PER-16-17 ORG-27 LOC-29

Note that you will have to parse out the “I” and “B” tags to get the correct spans.

2.2 Hyperparameters

Several of the models described have explicit hyperparameters that you will need to tune. It
is your responsibility to cleanly separate these out from the models themselves and expose as
command-line options. This makes it much easier to run experiments and to utilize experimental
scripts.

2.3 Logging and Reporting

As part of the write-up, you will need to report on the training and predictive accuracy of your
models. To make this possible, your code should report on various metrics of the model both at
training and test time. We will leave it up to you on which metrics to log, but we recommend
reporting training speed, training set NLL, training set predictive accuracy, and validation predic-
tive accuracy. It is your responsibility to convince us that the model is correctly training.

3 Models

For this assignment you will implement at least three models. We will warm up with a hidden
Markov model and then implement an maximum-entropy Markov model (MEMM). Finally you
will implement the structured perceptron. Finally you can extend the MEMM and CRF with non-
linear elements. Note that this is in keeping with the competition itself. Tjong Kim Sang and
De Meulder (2003) note that:

The most frequently applied technique in the CoNLL-2003 shared task is the Maximum
Entropy Model. Five systems used this statistical learning method. Three systems
used Maximum Entropy Models in isolation (Bender et al., 2003; Chieu and Ng, 2003;
Curran and Clark, 2003). Two more systems used them in combination with other

1Unfortunately Kaggle cannot yet reproduce the exact global metric used by the competition, so we utilize the mean
F-Score https://www.kaggle.com/wiki/MeanFScore with Fﬁzl metric

techniques (Florian et al., 2003; Klein et al., 2003). Maximum Entropy Models seem to
be a good choice for this kind of task: the top three results for English and the top two
results for German were obtained by participants who employed them in one way or
another.

Hidden Markov Models were employed by four of the systems that took part in the
shared task (Florian et al., 2003; Klein et al., 2003; Mayfield et al., 2003; Whitelaw and
Patrick, 2003). However, they were always used in combination with other learning
techniques. Klein et al. (2003) also applied the related Conditional Markov Models for
combining classifiers.

3.1 Hidden Markov Model

We begin by implementing a standard hidden Markov model for this problem, which will play
the role of our efficient count-based model (analogous to the role naive Bayes and ngram models
have played in previous assignments).

For this model, you should estimate the transition and emission distributions directly from
the tags and words passed in. The transition distribution is simply p(y;|y;_;) and the emission
distribution is p(x;|y;). Both of these are simply multinomial distributions and all the same ideas
about smoothing can be applied here, e.g. Laplace smoothing for word generation.

Note: we have been purposefully informal in class about the initial and final distribution of
the model. There are several different ways to handle this in practice. One simple idea we would
recommend is to have pseudo-words <s> and < /s> to start and end the sentence with corre-
sponding labels <t>and < /t>. You can then learn the transition to and from these tags. Remark
in your report how you handle boundaries.

Once you have code to train your HMM, implement the Viterbi algorithm with backpointers
for finding the highest-scoring sequence. Use the algorithm to find the best named-entities in the
dev and test data set. We recommend implementing the Viterbi algorithm for a general Markov
model (as described in the lecture notes), so that you can apply it to the other models in this
problem set.

Extension: Implement a feature HMM as described in the lecture slides. Instead of having the
tag emit generate the word itself, have it emit features associated with that word. In practice this
looks like the naive Bayes model from HW2 combined with a transition distribution.

3.2 Maximum-Entropy Markov Model

Next we will implement Maximum-Entropy Markov Models. That is instead of multinomial tran-
sition and emission distributions, you will directly estimate #(c;_1) as a function of the previous
tags c;_1 and any aspects of the input (typically mainly word w; but any features are allowed).

Recall that the term maximum-entropy here is synonymous with “multi-class logistic regres-
sion”. Therefore really what you are doing here is preprocessing the input in such a form that you
can train a multi-class logistic regression classifier with additional features of the previous tag.
You can implement this classifier just using the nn library with mini-batch SGD. And in fact you
may find it useful to start with your classifier from HW 2.

Once you have constructed the classifier, you can use it within your Viterbi algorithm from the
above. You can use your model to compute each #(c;_1) that you need for the function f, or you

mind find it easier to just precompute all # for the sentence. Either way, the core algorithm should
remain unchanged.

Extension: Implement a neural network MEMM as described in the lecture slides. Instead of
using a linear model, replace the network with a neural network model, using the GLOVE word
embeddings that we have included in the assignment. This just changes the score function for
constructing i, the rest of the model remains the same.

3.3 Structured Perceptron

For the final model implement the structured perceptron training algorithm as described in class.
Note that this algorithm is quite different than the others described so far. Instead of training the
model as a multi-class classifier, you will need to run search during training. You can then com-
pute the gradients of the model using the argmax output sequence and the gold output sequence.

We recommend implementing this algorithm on top of a similar architecture as the MEMM.
First start with all weights zeroed. Then for each example.

1. Use : forward on your position specific features to compute the scores § (without the soft-
max)

2. Use Viterbi and these values to find the highest-scoring sequence.
3. Compare this sequence to the gold sequence and find the timesteps where they differ.
4. For each of these timesteps:

e Call : forward to recompute each of the §

e Manually construct a gradient with -1 on the true output ¢; for §(c;_1) and 1 on the
predicted output ¢} for §(c; ;)

e Call :backward

5. Update the weights with learning rate 1.

Structured perceptron will likely be slower to train then the previous models. However if
you implement your Viterbi algorithm efficiently, the overhead can be quite small. In practice,
computing scores with sparse features usually dominates the computational overhead.

Extension: Instead of using the algorithm as described you can improve performance by in-
stead using the average of the weights of the structured perceptron through training (this has an
effect similar to L2 regularization). We pose it as an exercise of how to efficiently keep this running
average. In particular how to do this without touching all the parameters each update.

3.4 Additional Experiments

Once these models are constructed, you should also report on additional experiments on these
data sets. One natural extension would be to implement the forward-backward algorithm. Various
ideas you could try:

e Describe and compare the marginals produced by each of the models.

Implement posterior decoding. Does this produce better outputs? Does it allow you to better
calibrate f-score?

Implement the marginal-based pruning method described in class. Quantify the difference

Run CRF++ on this data.

Implement beam search. Is it faster? How does accuracy compare?

4 Report and Submission

For your write-up, follow the report template at https://github.com/cs287/hw_template.
Be sure to include a link to your code, Kaggle ID, and reports on your results.

In addition to submitting your Kaggle results, we also expect you to report on your experi-
mental process. This should include data tables, graphs and discussion of any issues that you
may run into.

References

Tjong Kim Sang, E. F. and De Meulder, F. (2003). Introduction to the conll-2003 shared task:
Language-independent named entity recognition. In Proceedings of the seventh conference on Nat-
ural language learning at HLT-NAACL 2003-Volume 4, pages 142-147. Association for Computa-
tional Linguistics.

